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Abstract. We study the interface between Regge behavior and DGLAP evolution in a non-perturbative
model for the nucleon structure function based on a multipole pomeron exchange. This model provides the
input for a subsequent DGLAP evolution that we calculate numerically. The soft input and its evolution
give a good fit to the experimental data in the whole available range of x and Q2.

1 Introduction

There is a growing consensus on that nucleon structure
functions (SF) at small virtualities Q2 are Regge behaved
and that at large Q2 they follow QCD evolution [1]. The
two regimes are incompatible because the DGLAP evo-
lution [2], in general, changes the functional form of any
Regge behavior (Regge models compatible with QCD evo-
lution in a limited range of Q2 will be mentioned below).
What remains completely unclear is the border between
the two.

Phenomenologically, the Regge pole approach to deep
inelastic scattering implies that the structure functions
are sums of powers in x, modulus logarithmic terms, each
with a Q2-dependent residue factor. The rapid increase in
Q2 of the structure functions, observed at HERA, initially
was considered as a sign of departure from the standard
Regge behavior. The reason was that the data, when fitted
by a single “Regge-pomeron” term ∼ x−λ, where λ is the
pomeron intercept minus one, show that

λ =
d

d ln 1/x
lnF2(x, Q2)

definitely increases with Q2. If so, Regge factorization
should be broken, since the “effective” pomeron trajec-
tory appears to be Q2-dependent.
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The above categoric conclusion was however based on
a parametrization of the SF by a single pomeron term, e.g.
∼ x−λ. It is evident that additional decreasing (“sublead-
ing”) terms, typical of any Regge pole model, will modify
the properties of the leading one (pomeron). Moreover, by
increasing the number of free parameters and with compli-
cated residue functions one may fit the data for arbitrarily
large values of Q2 in a factorised form, without introduc-
ing any Q2-dependent trajectory, although it makes little
sense to reach a good χ2 at any rate with an indefinite
number of free parameters introduced without any physi-
cal justification.

The (in)dependence of the Regge behavior (trajectory)
from the external masses (virtualities) comes from the fol-
lowing arguments. The Regge asymptotic behavior

A(s, t, Q2) = ξ(t)β(t, Q2)
(

s

s0

)α(t)

, (1)

where ξ(t) is the signature factor, β(t, Q2) is the residue
function, α(t) is the Regge trajectory and s, t are the
Mandelstam variables, comes from a Sommerfeld–Watson
transform over the partial-wave amplitude (see for exam-
ple [3])

a(l, t, Q2) =
β(t, Q2)
l − α(t)

. (2)

By Regge factorization, Q2-dependence can be intro-
duced in the residue, but not in the trajectory.

In this paper we are mainly interested in the small-
x or high-energy behavior of the structure functions and
photon–proton total cross sections, therefore we concen-
trate on the pomeron (in terms of the Regge pole model)
or singlet component of the SF, although, clearly, good
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fits and the evolution equation require the whole kinemat-
ical region in x to be properly covered. A model for the
pomeron, or singlet SF, and non-leading contributions, or
non-singlet SF, will be presented in Sect. 2.

Even though the role of the QCD evolution was stud-
ied in a great number of papers (see e.g. [4] and refer-
ences therein) the border and the interface between the
non-perturbative Regge dynamics and perturbative QCD
evolution is still determined merely by trial and error. De-
pending on the scope of the study, one may prefer either
approximate solutions [5–7] of the DGLAP equation [2] or
computer calculations, for which purpose efficient numer-
ical solutions and relevant computer codes are available
[8].

Explicit analytical solutions are attractive for their
simplicity and physical transparency. In the paper [6], for
example, the transition due to the evolution from a log-
arithmic increase in x (dipole model) to a power-like one
was shown explicitly by means of an approximate solution
of the DGLAP equation. Another example, in the Regge
framework, is given by the CKMT model [9,10].

Of particular interest are self-consistent solutions of
the DGLAP evolution equations [5], i.e. those whose func-
tional form does not change under the evolution. The
product of logarithms (in x and in Q2) proved to be par-
ticularly stable. In [7] this stability for the calculated Q2-
dependent coefficients, appearing in front of the factors
logarithmic in x, was checked experimentally. The stabil-
ity of the combination of the logarithms

F2(x, Q2) = a + mξ, ξ = ln
Q2

Q2
0
ln

x0

x
(3)

was noticed also by Buchmüller and Haidt [11] from phe-
nomenological analyses of the data. Reference [4] ap-
proaches this problem in a different spirit. The inclusion of
a “hard-pomeron” term, with Regge intercept about 1.4,
allows for a fit to structure functions with a χ2 per data
point near 1. Moreover this new term is self-consistent,
in the sense that a phenomenological parametrization of
its Q2-dependence, at small Q2, turns out to be in agree-
ment with perturbative evolution. However, the resulting
dynamics here is different from the one necessary to de-
scribe hadron–hadron scattering.

Aiming at an unbiased extraction of the Q2-dependent
factors appearing in the structure functions, the authors
in [12] have fitted them for a number of different models of
the pomeron, each appended by subleading terms as well
as a large-x factor. The numerical values of the fitted co-
efficients for a large number of fixed values of Q2 (Figs. 1,
2, 3 in [12]; see also Fig. 1 in [13]) can be used as “experi-
mental values”, independent of any evolution scheme.

The aim of this paper is to check the onset of QCD
evolution for the model of small-x SF that was discussed
earlier in [7,12]. This model contains a small (minimal in
our opinion) number of free parameters; still it is feasi-
ble and, supplemented by an evolution scheme, may have
numerous applications.

Our approach concerns the class of phenomenological
parametrization of structure functions describing the ex-

perimental data in the non-perturbative region; using this
parametrization as input to the DGLAP equations one
obtains a description of the experiment in the whole kine-
matic range [9,4]. This genuine evolution, in contrast to
global fits [14,15], does not use data at large Q2 to con-
strain the fit already at small Q2. In comparison to the
DL [4] model, where the pomeron has a hard nature, we
choose a multipole pomeron with unit intercept.

In the present paper the evolution is calculated numer-
ically by means of the codes developed and published by
Miyama and Kumano [8].

2 Multipole pomeron model

We analyze a unit intercept multipole pomeron, rather
than a supercritical one as in the CKMT case [9]. Here
multipole pomeron (MP) means that the pomeron is a
multipole instead of just a simple pole. The advantages
of this approach, both for hadron–hadron and for lepton–
hadron scattering, were tested and discussed in numerous
papers on that subject (see [1,7,12,13,16–19] and refer-
ences therein). The main point is that increasing cross
sections (and increasing SF) can be produced with a unit
pomeron intercept. The number and the relative weight
of the contributing multipoles is a very important ques-
tion. In QCD it was studied in [20]. The conclusion of
both the theory [20] and phenomenology is that a limited
(moreover, small!) number of multipoles is sufficient in
the present energy (or x, Q2) range. In fact, a dipole (log-
arithmic increase), eventually with a minor tripole contri-
bution (squared logarithm) accounts for the larger part of
the data (higher order poles do not become manifest).

The dipole (and tripole) pomeron are typically “soft”
objects. For the total cross sections they give fits close
to those of a “soft” supercritical, i.e. with α(0) ≈ 1.08,
pomeron. However, with an extra variable – t in hadron–
hadron processes or Q2 in lepton–hadron reactions – the
differences become essential. The result of the analysis
below, including QCD evolution, makes this comparison
more complete.

Both non-perturbative inputs are written as sums of
singlet and non-singlet terms:

F2(x, Q2) = FS(x, Q2) + FNS(x, Q2). (4)

We use the same non-singlet term taking it from [10] as

FNS(x, Q2) = D · x1−αR · (1 − x)n(Q2) ·
(

Q2

Q2 + b

)αR

,

(5)

n(Q2) =
3
2

·
(
1 +

Q2

Q2 + c

)
, (6)

where, contrary to the original paper [10], we disregard
the difference between the light quarks.

The singlet component of the SF, corresponding to a
multipole (single + double + triple) pomeron is a sum of
logarithms:
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Table 1. Parameters of the MP model

MP model values of the parameters

A 0.8286
B −0.1602 · 10−1

C 0.8208 · 10−2

a 0.7951
b 1.263
c 4.430
α 2.0 (fixed)
β 2.0 (fixed)
γ 0.7711
αR 0.415 (fixed)
D 1.434
χ2/dof 1.08

FS(x, Q2) = Q2
[
A

(
a

a + Q2

)α

+ B

(
a

a + Q2

)β

log
(

Q2

x

)
(7)

+ C

(
a

a + Q2

)γ

log2
(

Q2

x

)]
(1 − x)n(Q2)+4.

The same type of singlet component was used in [13].
The real photon–proton total cross section has the fol-

lowing form:

σtot
γp (W 2) = 4π2αEM · (

A + B · log(W 2
1 ) (8)

+ C · log2(W 2
1 ) + D · d−αR · (W 2

1 )αR−1) ,

where W 2
1 = W 2 − m2

p.
The parameters of (4)–(8) were determined from a

combined fit of σtot
γp for W > 4GeV and structure function

in the range of 0.045GeV2 ≤ Q2 ≤ 5GeV2.
We performed these fits to the set of the experimental

data [21] using (4)–(8). The values of the fitted parameters
and of χ2 are quoted in Table 1.

We have a rather small (eight) number of free param-
eters. In the MP model we fix the reggeon intercept as in
the CKMT model. Additionally α and β were fixed be-
ing not sensitive to the fit. The resulting fits are shown in
Figs. 1 and 2.

As already mentioned, we chose the starting point for
the QCD evolution in such a way as to have best fits with
the smallest number of the free parameters. By trial we
found that the value Q2

0 = 6GeV2 is preferable. In the
numerical calculation, we assume that the only difference
between the sea-quark and gluon distributions is a factor
G(1 − x)−2 in accordance with the dimensional counting
rules. The value of the constant G is 3.8, the number of
flavors is 4, λ = 200MeV. In contrast to [4], in our case
the ratio of the gluon distribution to the singlet-quark
distribution is smaller by a factor of two.

Figures 2 and 3 show the extrapolation of the Q2- de-
pendent “soft” Regge input as well as the results of our
numerical calculations of the DGLAP equation by means
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Fig. 1. Total γp cross section versus W in the MP model

of the NLO brute-force method, developed by Miyama and
Kumano in [8], thus extended to the high values of Q2

measured at [21]. The input coincides with the structure
function itself, supplemented by the aforesaid gluon distri-
bution, since the corrections implied by the MS scheme are
small and we neglected them. Although we are primarily
interested in the small-x behavior, large-x data, including
those from fixed-target experiments [21] were also taken
into account since they can influence the small-x behavior
through integration in the evolution equation.

3 Conclusions

We show that the world’s data on F2, down to Q2 = 0,
are reasonably well described within the Regge model we
have considered. The model succeeds in reproducing the
data for all x and a large Q2 interval, until Q2 ≈ 6GeV2,
whereupon DGLAP equations must be used in order to
correctly describe the Q2 evolution. What happens at the
border between Regge regime and QCD evolution is clar-
ified in the last icon of Fig. 2 and the first three frames of
Fig. 3. While the starting point for the DGLAP evolution
has been chosen at Q2

0 = 6GeV2, the extrapolation of the
“soft” Regge behavior gives a satisfactory fit of the data
until Q2 ≈ 10GeV2. In Fig. 3, one can see that the fit,
based on (4)–(8), deteriorates when Q2 increases and, at
Q2 = 20GeV2, it is excluded by the data. There is how-
ever a region, a Q2 interval, where the two regimes, Regge
and perturbative QCD, are compatible. The comparison
with other models, that consider only the small-x region
[4–7,11], shows that the region of compatibility shrinks
when the whole x-range is taken into account. To what
extent this depends on the specific model we have chosen,
is an interesting question and will be studied elsewhere.

To summarize, we find that the model described in (7),
for singlet SF, supplemented by a non-singlet component
as in (5), together with the DGLAP evolution, provides a
simple and economic solution that could be useful for fur-
ther practical applications, for example in nuclear physics.
In addition, we can conclude that the soft input and its
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evolution give a good fit to the experimental data in the
whole available range of the variables x and Q2.
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